Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 574: 97-109, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305732

RESUMO

HYPOTHESIS: The electrical charges that develop on the surface of the ceramic particles upon contact with water, due to the interaction with ions in solution, result in a liquid-solid interface, which utterly modifies the properties of individual particles and the way they interact with each other to form a structure. This work explores a new approach to the relationships between structure and stability of suspensions. EXPERIMENTS: For this purpose, suspensions with a constant 0.35 volume fraction of α-alumina particles, neither spherical nor smooth, and controlled ionic strength (0-90 mM KCl) were prepared and characterized in terms of flow behaviour, electrical conductivity and particle's electrokinetic mobility. FINDINGS: Electrical conductivity (132 µS/cm < conductivity < 5730 µS/cm) and rheology measurements (10-2 Pa s < viscosity < 104 Pa s) were found to complement each other to produce a more accurate picture of the suspension's structure. Deviations of experimental data from well-accepted behavioural models were elucidated when the surface area equivalent particle size was used. With the electrical double layer thickness obtained from electrical conductivity measurements, this enabled the interpretation of the relationship between the suspension's viscosity and the particles electrical conductivity, which provides a criterion for the stability of concentrated colloidal suspensions.

2.
J Colloid Interface Sci ; 286(2): 579-88, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15897074

RESUMO

This work describes the effect of solids load and ionic strength on the electrical conductivity (K(S)) of concentrated aqueous suspensions of commercial alpha-alumina (1-35 vol% solids). The results obtained show that the dependency of the electrical conductivity of the suspending liquid (K(L)) on the volume fraction of solids is well described by Maxwell's model. The change in the conductivity of the suspensions relative to that of the suspending liquid (K(S)/K(L)) was found to be inversely proportional to the solids content, as predicted by Maxwell's model. The relative conductivity rate, DeltaK, could be interpreted in terms of the DLVO theory and the particles double layer parameter, kappaa, and used as a stability criterion. As kappaa changes, in response to the changes in ionic strength, so does the conducting to insulating character of the particles and, as such, their contribution to the overall suspension conductivity (expressed by DeltaK). When the particles become insulating, the suspension conductivity decreases when the solids load increases. The turning point in this particle behaviour corresponds to a critical concentration of ions in the solution that destabilises the suspension and is associated with the critical coagulation concentration (ccc). It is the electrical double layer that ultimately determines the conducting or insulating character of the particles, and that character can be made to change, as required for suspension stability, and accessed by the relative conductivity rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...